
# **IMPURITIES IN WATER**

Water is in continuous recirculation between the earth's surface and the atmosphere through various processes which are collectively bound under the heading 'The Hydrological Cycle'. The diagram below explains the cycle which maintains the balance of the world's water. (Figure 1)



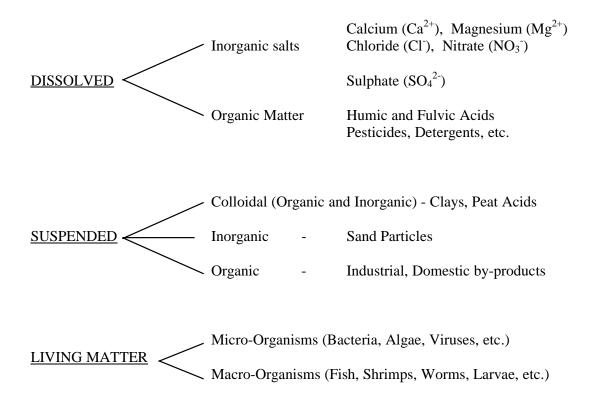
Water is lost to the atmosphere by evaporation from surface supplies and transpiration from vegetation. Water vapour then condenses in the cooler air, eventually returning to the earth's surface as precipitation, i.e. rain, sleet or snow. During its passage through the atmosphere, the water dissolves a range of gases. These include oxygen and carbon dioxide, together with oxides of sulphur and nitrogen, and carbon monoxide. In addition, as it nears the ground, the water picks up other contaminants such as airborne particulates, spores and bacteria.

Once water has fallen on the earth as rain, it will either start to penetrate the soil, remain on the surface in puddles, or run off into rivers or lakes - depending largely on the type of rock strata found immediately below the earth's surface. Therefore, the main source of impurities is the mineral and organic constituents which make up the upper layers of the earth's crust, and which are dissolved or held in suspension by the water.

Water supplies in the UK are drawn from three principal sources - groundwater, upland surface water and lowland surface water - each with its own set of characteristics. If raw water comes from underground sources - such as deep wells, boreholes or springs - it is likely to be rich in minerals, and to have high total dissolved solids (TDS) and hardness levels. The organic content, however, is generally low as most of the organic matter will have been filtered out as the water percolated down through the rock strata.

Waters taken from upland streams and lakes usually have a meagre mineral content and low TDS and hardness levels. However, they are rich in natural organic matter - especially humic and fulvic acids - which tend to give them a yellowish tinge. Surface water derived from lowland sources sometimes originates from springs and so has the same general characteristics as groundwater. River and canal waters, especially in industrial areas, tend to accumulate man-made pollutants, while recycled river water normally has high TDS levels. Table 1 shows the TDS content of raw waters in different parts of the country. The figures provide only a general guide to contamination levels, as there are often local variations in raw water quality.

#### Table 1:


## FEEDWATER TOTAL DISSOLVED SOLIDS (TDS) IN MILLIGRAMS PER LITRE POST CODE AREAS OF GREAT BRITAIN

| Post<br>Code | Area        | TDS      | Post<br>Code | Area                  | TDS      | Post<br>Code | Area               | TDS      |
|--------------|-------------|----------|--------------|-----------------------|----------|--------------|--------------------|----------|
|              |             |          |              |                       |          |              |                    |          |
| AB           | Aberdeen    | <100     | GU           | Guildford             | 300-400  | PH           | Perth              | 70       |
| AL           | St Albans   | 300-500  | HA           | Harrow                | 400-500  | PL           | Plymouth           | 100      |
| В            | Birmingham  | 100      | HD           | Huddersfield          | 100-200  | РО           | Portsmouth         | 400      |
| BA           | Bath        | 400      | HG           | Harrogate             | 100-200  | PR           | Preston            | 150      |
| BB           | Blackburn   | 50       | HP           | Hemel<br>Hempstead    | 300-400  | RG           | Reading            | 400-500  |
| BD           | Bradford    | 100      | HR           | Hereford              | 100      | RH           | Redhill            | 300      |
| BH           | Bournemouth | 400      | HU           | Hull                  | 400-500  | RM           | Romford            | 500      |
| BL           | Bolton      | 50       | HX           | Halifax               | 100-200  | S            | Sheffield          | 200-300  |
| BN           | Brighton    | 400      | IG           | Ilford                | >500     | SA           | Swansea            | 100      |
| BR           | Bromley     | 400      | IP           | Ipswich               | >500     | SG           | Stevenage          | 500      |
| BS           | Bristol     | 500      | IV           | Inverness             | 70       | SK           | Stockport          | 100      |
| CA           | Carlisle    | 150      | KA           | Kilmarnock            | 70       | SL           | Slough             | 500      |
| CB           | Cambridge   | 400-700  | KT           | Kingston              | 400-500  | SM           | Sutton             | 500      |
| CF           | Cardiff     | 100-400  | KW           | Kirkwall              | 70       | SN           | Swindon            | 400-500  |
| СН           | Chester     | 150-300  | KY           | Kirkcaldy             | 70       | SO           | Southampton        | 400      |
| СМ           | Chelmsford  | 400->500 | L            | Liverpool             | 200-400  | SP           | Salisbury          | 400      |
| СО           | Colchester  | 400->500 | LA           | Lancaster             | 100      | SR           | Sunderland         | 100-400  |
| CR           | Croydon     | 400      | LD           | Llandrindodd<br>Wells | 40       | SS           | Southend           | 300-500  |
| СТ           | Canterbury  | 400      | LE           | Leicester             | 500      | ST           | Stoke-<br>On-Trent | 300-500  |
| CV           | Coventry    | 200->500 | LN           | Lincoln               | 400-500  | SY           | Shrewsbury         | 150-300  |
| CW           | Crewe       | 200      | LS           | Leeds                 | 200-300  | TA           | Taunton            | 300      |
| DA           | Dartford    | 400-500  |              | London                | 400-500  | TD           | Galashiels         | 70       |
| DD           | Dundee      | 70       | LU           | Luton                 | 500      | TF           | Telford            | 300-500  |
| DE           | Derby       | 200      | М            | Manchester            | 70       | TN           | Tonbridge          | 400      |
| DG           | Dumfries    | 70       | ME           | Medway                | 400-500  | TQ           | Torquay            | 100      |
| DH           | Durham      | 100      | MK           | Milton<br>Keynes      | >500     | TR           | Truro              | 300      |
| DL           | Darlington  | 100      | ML           | Motherwell            | 70       | TS           | Cleveland          | 200-900  |
| DN           | Doncaster   | 400-500  | NE           | Newcastle             | 150-300  | TW           | Twickenham         | 500      |
| DT           | Dorchester  | 400      | NG           | Nottingham            | 400      | UB           | Southall           | 500      |
| DY           | Dudley      | 200-350  | NN           | Northampton           | 300->500 | WA           | Warrington         | 100-300  |
| EH           | Edinburgh   | 70       | NP           | Newport               | 200      | WD           | Watford            | 500      |
| EN           | Enfield     | 300-500  | NR           | Norwich               | 500      | WF           | Wakefield          | 200      |
| EX           | Exeter      | 150      | OL           | Oldham                | 100-300  | WN           | Wigan              | 100-300  |
| FK           | Falkirk     | 100      | OX           | Oxford                | 400      | WR           | Worcester          | 200-400  |
| FY           | Blackpool   | 100      | PA           | Paisley               | 70       | WS           | Walsall            | 200-400  |
| G            | Glasgow     | 50       | PE           | Peterborough          | 400-500  | WV           | Wolverhamp-<br>ton | 200->500 |
| GL           | Gloucester  | 500      |              |                       |          | YO           | York               | 300-400  |

Surface waters are especially prone to seasonal changes in quality caused mainly by varying levels of organic contaminants. For instance, during the autumn and winter months, dead leaves and decaying plants release large quantities of organic matter into streams, lakes and reservoirs. As a result, the degree of organic contamination reaches a peak in January and February, falling to a minimum in July and August.

Water has been called both 'the matrix of life' and 'the universal solvent'. So in addition to providing a life-support system for a broad range of living organisms, it can dissolve virtually every chemical compound, though not necessarily to a detectable degree. However, mains water is still purer than bulk commercial chemicals; it normally contains < 500 mg/l TDS - equivalent to a purity of 99.95%. Even so, minute quantities of impurities can have a profound effect on industrial and laboratory processes - hence the need for purification.

The impurities present in raw waters can be classified as follows:



See Table 2 'Classification and Origin of Impurities Found in Water' for more details.

### Table 2

# CLASSIFICATION AND ORIGIN OF IMPURITIES FOUND IN WATER

| Class of Impurity                               |     |                                        | Typical Impurities and their origins               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-------------------------------------------------|-----|----------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.<br>D<br>I<br>S<br>S<br>O<br>L<br>V<br>E<br>D | 1.1 | Inorganic Salts                        | 1.1.1<br>1.1.2<br>1.1.3<br>1.1.4<br>1.1.5<br>1.1.6 | Leaching of minerals and pick-up of<br>atmospheric CO <sub>2</sub> , leads to hardness,<br>alkalinity and other mineral impurities.<br>Fertiliser run-off, mostly phosphate ( $PO^{3-}_{4}$ ),<br>nitrate ( $NO_{3}^{-}$ ) and sulphate ( $SO_{4}^{2^{-}}$ ).<br>Proportion of inorganic salts in domestic<br>waste returned to the water cycle, mostly<br>sodium ( $Na^{+}$ ), chloride (CI <sup>-</sup> ) and phosphate<br>( $PO^{3^{-}}_{4}$ ).<br>Industrial discharges of all kinds, especially<br>from metal finishing trade.<br>Salinity (principally chlorides) from sea<br>water or saline groundwater intrusion.<br>Breakdown products of organic nitrogen<br>( $N_{2}$ ) yielding ammonium compounds and<br>nitrates ( $NO_{3}^{-}$ ). |  |
|                                                 | 1.2 | Dissolved Organic<br>Matter            | 1.2.1<br>1.2.2<br>1.2.3<br>1.2.4                   | Natural impurities from decay of vegetable<br>and animal matter, leading to colouring<br>material and humic and fulvic acids.<br>Domestic waste: general biological debris<br>and decay products, soap, detergents.<br>Industrial discharges from e.g. food<br>processing and intensive agriculture,<br>papermaking, organic chemical industry.<br>Includes fats, oils and solvents.<br>Residues of pesticides, herbicides etc.                                                                                                                                                                                                                                                                                                                   |  |
| 2.<br>S<br>U<br>S<br>P<br>E<br>N                | 2.1 | Colloids<br>(Organic and<br>Inorganic) | 2.1.1<br>2.1.2<br>2.1.3<br>2.1.4                   | Inorganic Colloids such as clay, and iron<br>(Fe) or manganese (Mn) oxides.<br>Natural organic macro-molecules and<br>particles (cf 1.2.1).<br>Industrial wastes from e.g. china, clay or<br>paper processing.<br>A component of sewage solids.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| D<br>E<br>D                                     | 2.2 | Suspended Inorganic<br>Matter          | 2.2.1<br>2.2.2                                     | Natural materials, mostly sand.<br>Industrial materials from coal washings,<br>mining waste, lime and other sludges, oxide<br>dust, fly ash, flue washings etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                 | 2.3 | Suspended Organic<br>Matter            | 2.3.1<br>2.3.2                                     | Plant and animal particles (cf 1.2.1)<br>Industrial and Domestic products (cf 1.2.3<br>and 2.1.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 3.                                              | 3.1 | Micro Organisms                        | 3.1.1                                              | Algae, viruses, bacteria, protozoa,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

| L<br>I<br>V<br>I<br>N<br>G<br>M<br>A<br>T<br>T |     |                   | 3.1.2<br>3.1.3 | microfungi, etc. occur in all natural waters<br>and some fraction at least remains behind<br>unless it is specifically removed.<br>Occurrence is promoted by nutrients (cf esp.<br>1.1.2) and favourable breeding grounds e.g.<br>domestic sewage. Exposure to light<br>promotes algae growth.<br>Iron (Fe) bacteria in ferruginous wells and<br>iron pipes.<br>Sulphur (S) bacteria (in anaerobic<br>conditions).     |
|------------------------------------------------|-----|-------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E<br>R                                         | 3.2 | Larger Life Forms | 3.2.1<br>3.2.2 | Fish, newts, worms, crustacea, insect larvae,<br>water lice etc. breed in large numbers where<br>food is plentiful.<br>Aquatic plants, floating and rooted.                                                                                                                                                                                                                                                            |
| 4.<br>G<br>A<br>S<br>E<br>S                    | 4.  | Gases             |                | $O_2$ and $CO_2$ occurs in all natural waters.<br>Some underground sources contain high $CO_2$ , a few contain $H_2S$ . $NH_3$ can result from biological decay or from industrial discharge. Cooling towers pick up $CO_2$ and, in some industrial sites, $SO_2$ . $Cl_2$ is often used deliberately.<br>Algal growth removes $CO_2$ and may raise $O_2$ to super-saturation in daytime, with some reversal at night. |

#### 3. WHAT IS HARD WATER?

All natural water contains dissolved mineral salts which leave deposits in pipes and plant, particularly when the water is heated. The commonest salts are calcium and magnesium and their concentration in water is expressed either in parts per million (ppm) or in 'degrees hardness' which vary from country to country. The following tables form a ready reckoner for converting the figures involved.

#### Table 3:

|                          | American<br>Degree | English<br>Degree | French<br>Degree | German<br>Degree | ppm<br>(CaCO <sub>3)</sub> |
|--------------------------|--------------------|-------------------|------------------|------------------|----------------------------|
| American Degree          | 1.00               | 1.20              | 1.71             | 0.96             | 17.10                      |
| English Degree           | 0.83               | 1.00              | 1.43             | 0.80             | 14.30                      |
| French Degree            | 0.58               | 0.70              | 1.00             | 0.56             | 10.00                      |
| German Degree            | 1.04               | 1.24              | 1.79             | 1.00             | 17.85                      |
| ppm (CaCO <sub>3</sub> ) | 0.06               | 0.07              | 0.10             | 0.06             | 1.00                       |

| 1 American Degree | = | 1 grain CaCO <sub>3</sub> per US gallon       |
|-------------------|---|-----------------------------------------------|
| 1 English Degree  | = | 1 grain CaCO <sub>3</sub> per Imperial gallon |

- 1 French Degree
- = 1 German Degree =
- 1 part CaCO<sub>3</sub> per  $10^5$  parts water 1 part CaCO<sub>3</sub> per 5.6 x  $10^4$  parts water

Normally accepted classifications for water are as follows: Table 4:

|                 | English Degrees | ppm (CaCO <sub>3</sub> ) |
|-----------------|-----------------|--------------------------|
| Soft            | 0 - 3.5         | 0 - 50                   |
| Moderately soft | 3.5 - 7.0       | 50 - 100                 |
| Slightly hard   | 7.0 - 10.5      | 100 - 150                |
| Moderately hard | 10.5 - 14.0     | 150 - 200                |
| Hard            | 14.0 - 21.0     | 200 - 300                |
| Very hard       | over 21.0       | over 300                 |

| ppm     | = | mg/l (milligrams per litre) |
|---------|---|-----------------------------|
| 1°Clark | = | one English degree          |