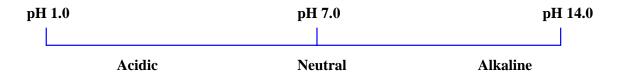
CHARACTERISTICS OF DEIONISED WATER

(A) DEFINITIONS OF PURIFIED WATER


Table 5 provides a definition of purified water quality in terms of the ionic impurities only; it lists three grades of deionised water - ultra-pure, pure and purified water - each with a specified range of resistivity/conductivity. Table 6 is a conversion chart for conductivity and resistivity; one is the reciprocal of the other.

(B) RESISTIVITY AND TEMPERATURE

The resistivity and conductivity of water are temperature-dependent. If the temperature rises by 1°C, the conductivity of mains water will increase by approximately 2%, whereas that of ultra-pure water will increase by up to 6%. It is standard practise to correct conductivity and resistivity to 25°C, a process which is carried out automatically by modern conductivity meters. Figure 22 plots the resistivity of ultra-pure water against temperature.

(C) pH MEASUREMENTS IN DEIONISED WATER

The pH of water is a measure of its acidity or alkalinity, and is defined as: $pH = -log_{10} [H^+]$, where $[H^+]$ is the nolar concentration of hydrogen ions. pH values are defined on a scale from 1 to 14, with ultra-pure water having a neutral pH of 7.0.

The pH of ultra-pure water is difficult to measure. Not only does high-purity water rapidly pick up contaminants - such as carbon dioxide (CO_2) - that affect its pH, but it also has a low conductance that can affect the accuracy of pH meters. For instance, absorption of just a few ppm of CO_2 can cause the pH of ultra-pure water to drop to 4.5, although the water is still of essentially high quality.

The most accurate estimation of the pH of ultra-pure water is obtained by measuring its resistivity; for a given resistivity, the pH must lie between certain limits. For example, if the resistivity is 10.0 M Ω .cm, the pH must lie between 6.6 and 7.6. The relationship between the resistivity and pH of high-purity water is shown in Figure 23.

MΩ.cm @ 25°C	Ω.cm @ 25°C	μS.cm @ 25°C	Total dissolved solids in parts per million	
Electrical Resistivity		Electrical Conductivity	TDS in ppm (approx.)	
18	18,000,000	0.0555	-	ULTRA-PURE
10	10,000,000	0.1	-	WATER
5	5,000,000	0.2	_	
2	2,000,000	0.5	-	PURE WATER
1	1,000,000	1.0	0.7	
0.5	500,000	2	1.4	
0.2	200,000	5	3.5	PURIFIED WATER
0.1	100,000	10	0.7	
0.05	50,000	20	14	
0.02	20,000	50	35	

Table 5:Definition of purified water quality (in terms of ionic impurities only)

Quality:	ULTRA-PURE WATER	PURE WATER	PURIFIED WATER
Typical Resistivity:	10 - 18 MΩ.cm	1 - 10 MΩ.cm	1 - 0.02 MΩ.cm
or			
Conductivity:	0.1 - 0.0555 µS/cm	1.0 - 0.1 µS/cm	1 - 50 µS/cm
Produced by:	Polishing mixed-bed	Strongly basic	Weakly basic
	system e.g. nuclear	mixed-bed system.	mixed - bed system.
	grade resins.		

Table 6: Conductivity versus Resistivity Conversion Chart

Conductivity (µS/cm)		Resistivity (ohm.cm)
0.01	+	100M
0.02	+	50M
0.05	+	20M
0.1	+	10M
0.2	+	5M
0.5	+	2M
1.0	+	1M
2.0	+	500K
5.0	+	200K
10	+	100K
20	+	50K
50	+	20K
100	+	10K
200	+	5K
500	+	2K
1000	+	1K

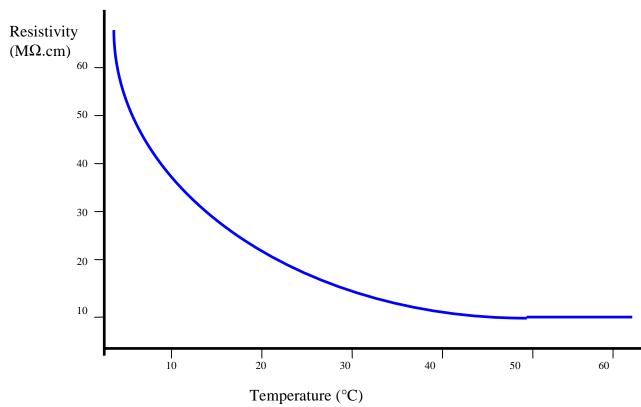
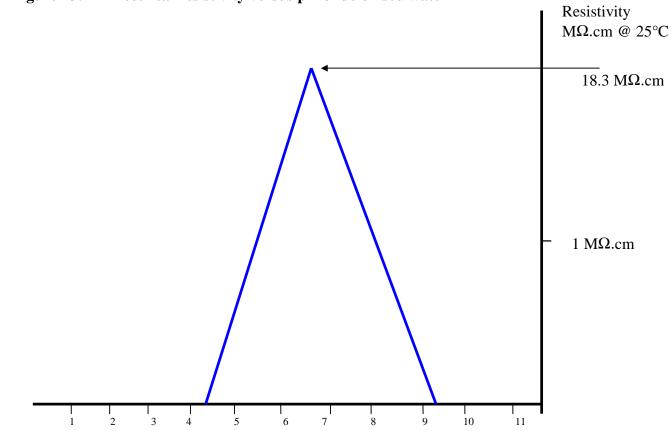



Figure 22: Relationship between the resistivity of ultra-pure water and temperature

Figure 23: Electrical resistivity versus pH of deionised water

